Solid Phase Synthesis of 4H-Pyrimido[2,1-b] Benzothiazol-4-ones from Resin-Bound Cyclic Malonic Ester

Zhan Xiang LIU, Lu Ling WU, Xian HUANG*

Department of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028

Abstract: The solid phase synthesis of 4H-pyrimido[2,1-b] benzothiazol-4-ones has been reported.

Keywords: 4H-pyrimido[2,1-b]benzothiazol-4-ones, Meldrum's acid, solid phase synthesis.

There has been enormous interest in combinatorial and parallel synthesis in the last decade using solid phase methodology¹. With the successful synthesis of 4(1H)quinolones from resin-bound cyclic malonic ester², we attempted to carry out the solid phase synthesis of 4H-pyrimido[2, 1-b] benzothiazol-4-ones (**Scheme 1**). These compounds were successfully prepared *via* solution-phase synthesis by our group ³ and others⁴. We used the 2-aminobenzothiazole or 2-amino-4-methyl-thiazole as doubly nucleophilic reagents. When the cyclic malonic ester resin **1** was converted to the resin **2**, the carbonyl peak in IR shifted to 1730 cm⁻¹ and 1670 cm⁻¹. Also a new peak appeared at 1615 cm⁻¹ (C=C) compared with resin **1**. The resin **2** was cleaved by thermal cyclization to form the heterocyclic compounds **3**. The yields and purities of **3** were listed in **Table 1**.

We treated the resin **3** (500 mg, 1.20 mmol/g) with triethyl orthoformate (5 mL) and 2-amino benzothiazole (6 mmol) to obtain the resin-bound amine methylene cyclic malonic ester **4**. Then the resin **4** was heated in oil-bath at 240°C for 20 minutes under N₂ atmosphere. The resin was washed with EtOH/acetone completely. The products generally do not require purification and show good purity (>95%) by ¹H NMR (**Table 1**).

This is also a novel traceless cleavage strategy to prepare 4H-pyrimido[2, 1-b] benzothiazol-4-ones. The resin **4** can be reused to prepare the resin 1^2 .

^{*}E-mail: huangx@mail.hz.zj.cn

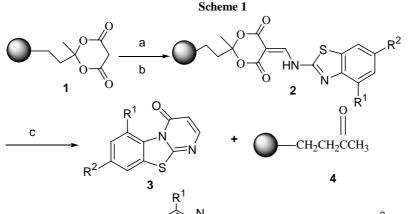


Table 2 Yields and purities of 4H-pyrimido[2,1-b] benzothiazol-4-ones 3a~f

Entry	Product	\mathbb{R}^1	\mathbb{R}^2	Yield(%) ^a	Purity(%) ^b
1	3a	Н	CH ₃ O	72	>95
2	3b	Н	CH_3	82	>95
3	3c	CH ₃	Н	77	>95
4	3d	Н	Н	86	>95
5	3e	Н	C 1	81	>95
6	3f	Н	Br	77	>95

a. The crude yields are based on the loading of the cyclic malonic ester resin 11. b determined by 1 H NMR.

Acknowledgment

Project 20072032 was supported by the National Natural Science Foundation of China.

References

- 1. F. Guillier, D. Orain and M. Bradley, Chem. Rev., 2000, 100, 2091.
- 2. X. Huang, Z. X. Liu, Tetrahedron. Lett., 2001, 43, 7655.
- 3. F. C. Ye, B. C. Chen and X. Huang, Synthesis, 1989, 4, 317.
- 4. R. Cassis, R. Tapia and J. A. Valderrama, Synth. Commun., 1985, 15, 125.

Received 29 April, 2002